
1

The Hidden Risks of
Off-the-Shelf Integration
Engineering Square Pegs into

Round Holes

Jeff Lubelczyk/522 and Dave Sames/522

3

Agenda

■ Introduction

■ The OTS “Mythology”

■ Areas of Risk

■ Risk Mitigation

■ Considerations

■ Case Study

■ Conclusion

4

Introduction

■ Purpose of Presentation
– Examine areas of risk

– Provide insight into total cost of OTS solutions

– Identify guidelines for using OTS components

– Share NCC SPSR real-life experiences

■ Definition of OTS software
– Software libraries, tools, or packages relating

to functional aspects of the system or the
development environment

5

Introduction (Cont’d)

■ NCC SPSR
– Replace Unisys mainframe with a workstation

environment

– Move from proprietary system to “open” system

– Use Commercial Off-the-Shelf (COTS) software
to reduce custom software maintenance costs

– Improve software design to enhance flexibility

– Improve NCC scheduling capabilities for
increased space network utilization

6

Introduction (Cont’d)

■ NCC SPSR
– OTS products integrated into design: 8

– OTS products supporting development: 21

– Total DSI: 162k + 26k (ROSE)

7

The OTS “Mythology”

■ Independently meets system functionality

■ Plug-and-Play

■ Minimal Effort

■ Bug free

■ Cheaper than “new” development

8

The Truth

■ If the mythology were true, there would be
no risks associated with using OTS
solutions.

■ However, the mythology is not true, and
we must therefore identify the areas of risk
and manage them appropriately.

9

Areas of Risk

■ Schedule

■ Quality

■ Performance

■ Maintainability

■ Cost

10

Areas of Risk (Cont’d)

■ Schedule
– Learning curve

– Integration

– Unplanned-for technical problems
— Misapplication of product

— Bugs

— Impacts to other development areas

– Dependency on vendor’s lifecycle
— Turn-around time for bug fixes

— Upgrades in functionality

11

Areas of Risk (Cont’d)

■ Quality
– Design driven by OTS packages

— Decisions not necessarily correct, but because the
OTS software demands them

– Work-arounds due to OTS shortfalls

– OTS reliability can be unknown
— “Newness” of implementation

— Meeting of project standards

— Metrics

— Testing

12

Areas of Risk (Cont’d)

■ Performance
– Two areas

— Development

— Operational

– Tunability

– Software size

– Scalability

13

Areas of Risk (Cont’d)

■ Maintainability
– System configuration stability

– Other tool support needed to maintain OTS
products

– Vendor support & longevity

– Conformance to standards

– Design consistency (nonhomogeneity)

14

Areas of Risk (Cont’d)

■ Cost
– All of the preceding areas of risk contribute to

the overall OTS application cost

– Cost is not just the cost of the product
— Learn

— Integrate

— Maintain

15

Risk Mitigation

■ Research
– User groups, newsgroups, and reviews

– Customers

– Sales people (with salt)

■ Hands-on Assessment
– Demo version

– Test basic design concepts

16

Risk Mitigation (Cont’d)

■ Decoupling
– Provide well-defined interfaces to the package

– Isolate usage if possible

■ Scheduling
– Schedule learning time

– Allow time for the unknown

17

Risk Mitigation (Cont’d)

■ Expert Users
– Cultivate experts on your team or recruit them

– OTS Engineer

■ Consultants
– Expensive, but can be worth it

– Review design concepts involving product

– Debugging

18

Risk Mitigation (Cont’d)

■ Source Code
– Compilable in consistent manner

– Problems can be fixed directly

– Some isolation from software upgrades

■ Replacement
– Don’t feel wedded to a product just because

you bought it

– Systems built upon a bad product are doomed
to failure

19

Considerations

■ Vendor Support & Accessibility
– Installed user base

– Support

– Upgrades

– E-mail and phone access

– Relationship leverage

■ OS Support & Licensing Agreements
– Keeping up the “latest & greatest”

20

Considerations (Cont’d)

■ Compatibility with other OTS packages
– Use of other third-party products by more than

one party

– Namespace trampling

– Industry standards

■ Configuration Management Issues
– Version control of generated code

– Control of OTS packages against developed
software releases

21

Considerations (Cont’d)

■ CM resource requirements

■ Product History
– Past experiences

– Limitations of product

■ Documentation
– Current

– Accurate

– Easy-to-use

22

Considerations (Cont’d)

■ Cross-Platform availability
– What’s is the primary platform?

■ Administrative Support
– Periodic maintenance required

– Training

■ Time to Learn

23

OTS Evaluation Worksheet

OTS Product Product X Product Y Product Z
Vendor Support
& Accessibility 1.0 8 8.5 9

Licensing 1.0 8 8 8
Compatibility 1.5 9.5 9 8.75
Configuration
Management 1.0 5 5 5

Reliability 1.8 6.75 7 8.5
Integration 1.8 9 9 8
Scalability 1.0 7.5 7.5 7.5

Installation Size 0.0 6 7 8
Performance 1.5 6 7 8

Product History 1.3 7 7 9
Documentation 1.0 8.5 7 7.5

Application
Context 1.0 5 5 5

Portability 1.0 8 8.5 7.5
Total Rating 9.13 9.19 9.56

24

The Good

■ Adaptive Communications Environment
– Provided event-framework & communications classes

– Source code provided (20000 LOC)

– Large users-group/support

– Time to configure, compile, and install

– Used (directly or indirectly) about 11000 LOC of the library

■ Builder Xccessory - GUI builder

■ RogueWave Libraries
– 34 classes used with about 3500 LOC

– Fairly robust

25

More Good

■ Purify
– Helped to find bugs

– Fairly easy to use

– Some problems with larger, complex programs

■ Quantify - performance analysis

■ Xemacs - editor, etc

■ Perl - scripting language

■ CVS - configuration management tool

26

The Bad

■ The evolving C++ ANSI standard
– Lack of vendor support

– Strict compilation enforcement by aCC

■ RogueWave Libraries
– Multiple vendors use of different RW versions

– Bugs in GUI modules

■ HP Softbench - development environment
– Difficult to use

– Slow

27

More Bad

■ Orbix
– Bugs (crashes, memory leaks)

– Overkill for application context

– Incompatibility across implementations

■ Software-through-Pictures
– Slow

– OS support lag

– Scalability problems

– SPSR-specific implementation

28

The Ugly

■ The HP C++ compiler
– Template instantiation

– Code linking & symbol resolution

– Slow

29

More Ugly - A Case Study

■ Persistence
– OO database objects

– Automatic code generation

– Automatic Oracle RDBMS table generation

– Use StP modeling tool

– Provide type checking at compile time

30

Persistence

■ Actual Experience
– Shallow learning curve

– Poor documentation

– Ineffective vendor support

– Slow database generation

– Poor mapping to RDBMS

– Bugs

– Poor scalability

31

Persistence (Cont’d)

■ Impacts
– 30 step process for DB generation (StP -> lib)

– Integration problems
— Slow turnaround (two weeks minimum)

— RW usage within persistence

– Not tunable from a RDBMS perspective

– Large libraries leading to long-link times

– Over-normalized database (RDBMS)

32

Persistence (Cont’d)

■ Impacts
– Slow performance due to objectification of

data from RDBMS

– Needed new hardware to support DB
development

– Poor design decisions due to slow turnaround
time

– Insufficient testing due to late availability of
changes

33

Persistence (Cont’d)

■ SPSR Redesign
– After 2.5 years into a 4-year project lifecycle

– Goals
— Decoupling of database and application software

— Limit use of Persistence & StP

— Reduce size & complexity of database

— Redesign software to support performance goals

34

Persistence (Cont’d)

■ Conclusion
– Negatively impacted schedule, performance,

quality, maintainability, and cost

– Cost

Purchase $23,700.00
Licensing $48,000.00
Development $200,000.00
Redesign $600,000.00
Consulting 10,000.00
Learning Curve $150,000.00

Total: $1,031,700.00

35

Persistence (Cont’d)

■ What were some indicators?
– New Product/Limited research

– Hands-on-Assessment
— Early use indicated scalability problems

— Compatibility issues (RogueWave)

— Integration problems

– Poor vendor support

– Poor development and runtime performance

– Schedule slips due to database changes

36

Persistence (Cont’d)

■ What were our options?
– Replacement

■ Generic query interface 2-3 SM

■ Object interface: 8-9 SM

■ Advantages
– Detailed knowledge of end product

– Maintainable

– Controllable

– Bring in consultant early in development cycle

37

Conclusion

■ Keep Risk in Mind
– Mitigate

– Manage

– Especially if OTS used in critical area

■ Plan for the Unknown

■ Use OTS Solutions Wisely
– Account for ALL Costs of OTS

38

OTS Products Purchased for
SPSR Development
■ Acrobat Reader

■ Builder Xcessory

■ ClearCase (not used)

■ ClearTrack (not used)

■ AR User/Notifier (CDS)

■ Database Xcessory (not used)

■ Eudora (not used internally)

■ FrameMaker

■ Netscape Gold

■ Softbench (little used)

■ Software through Pictures

■ CVS

■ Purify

■ PureCoverage

■ Quantify

■ Xemacs

■ MS Office

■ MS Project

■ Python

■ QA Partner (not used)

■ QA Agent (not used)

39

OTS Products Integrated Into
SPSR Design

■ ACE

■ Orbix (removed)

■ Oracle

■ Ilog

■ Perl

■ Persistence

■ RogueWave tools.h

■ RogueWave view.h

